
RXCWNN - A python program for the

decoding of morse signals with a neural

network

Ties Bos - PA0MBO

May 15th, 2020

Abstract

A python program was developed for the decoding of radio am-
ateur morse signals with a recurrent convolutional neural netwerk.
The network was trained with a large set of audio files generated with
varying signal to noise ratios, sending speeds from 10 to 40 words per
minute, QSB, random small timing variations during the sending of
the characters and with impulse noise. The decoding results are on a
par with CWSkimmer and the program can be run under Windows
10 on a somewhat older CPU, the JETSON NANO and the raspberry
pi 4

Keywords: Morse decoding - Hamradio - Recurrent convolutional neu-
ral networks

1 INTRODUCTION

Since my retirement in 2001 I did not touch neural network program-
ming until recently I bought a JETSON NANO. This cheap little
processor board houses a lot of computing power that enables it to
process video streams coming in from a Raspberry Pi camera for the
recognition of common objects in real time. The software that comes
with it is mostly written in Python and working through its examples
I noticed the similarity of the problems the software has to deal with
in processing handwritten texts with the problems of decoding morse
signals, especially the synchronization problem in noisy conditions.

Having experimented with various implementations of the Goertzel
[1] algorithm and the ESP32 processor [2], [3] and being somewhat

1



disappointed by the results in comparison to the ”golden standard”
CWSkimmer, I decided to try to find out if decoding morse signals
with a neural network instead of using Bayesian statistics would pro-
duce useful results. Searching the web for ”decoding morse code with
neural networks” I learned that quite a lot of work has already been
done on this subject, i.e. by Fabián Tamás László [4] and Mauri A
Niininen (AG1LE) [5].

Seeing the spectacular results that can be obtained by using a
combination of convolutional and bidirectional LTSTM (long term
short term memory) layers and connectionist temporal classification
CTC of the outputs of the network in optical character recognition
[6] I decided to try that deep learning network architecture in my
own experiments. The capacity of this network should be sufficient
for recognizing the morse code because for amateur use this code has
only 48 classes (the 26 characters of the alphabet, the 10 numbers,
some puntuation marks and the prosigns) versus the upper and lower
case characters (52) in reference [6].

2 EXPERIMENTS

2.1 Training an test sets

Obtaining sufficient annotated training and test material from the
bands seemed too cumbersome for me, so I used the fine program gen-
erate wav samples.py developed by Fabián Lászlói [4] for this pur-
pose. This program generates morse code audio with various amounts
and types of noise at various sending speeds and stores the results in
wav-files with their annotation in companion text files. The duration
of the signal and the amount of textblocks are given to the program
in command line arguments. All its other parameters, i.e. the send-
ing speed in wpm, noise, etc. are stated in the program itself and
used as given in the distributed file (10 - 40 wpm). However some
changes were made to the morse code character set; the prosigns and
some punctuation marks like the question mark were added in the
config.py file. Moreover the program was modified to take the dura-
tion of the signal in milliseconds instead of seconds. 100,000 wav-files
were generated each of a duration of 8,192 msec for a total amount
of somewhat more than 225 hours of morse code. In the training of
the network 90,000 files were used as training set whereas 10,000 files
were used for validation.

The training was performed with a slightly modified program taken
from [6]. The input layer dimension was modified to use 65536 samples
of audio directly from the generated wav-files. Training with batches

2



of 64 files was performed for 100 epochs and took about 30 hours to
complete on a system with an AMD Ryzen Threadripper 3970X 32-
Core processor and 128 GB of memory. After the 100 epochs training
loss as well as validation loss showed slight variations over the epochs
but they did not decrease anymore. During training the best perform-
ing (lowest validation loss) network weights were saved to file. After
finishing the best performing network was tested with a separately
generated test set consisting of 100 wav-files from which the accuracy
of the network was calculated.

2.2 Setup for real time decoding of band sig-

nals

For real time decoding of audio signals from a transceiver the au-
dio samples are acquired from a soundcard in the computer with its
mike input connected to the transceivers audio output. The python
program rxcwnn.py uses routines from the python package sound-
device for this purpose. Furthermore this program uses routines from
the module queue to keep up a constant flow of audio data without
interruptions. The processing is performed in chunks of 65536 data
points from a buffer that is filled by shifting in a quarter as much au-
dio data at 4096 msec intervals. The audio sample frequency is 8000
Hz. The problem of synchronization at the character level is solved by
”stitching” two consecutive overlapping text strings that are obtained
from the 65536 samples buffer at 16384 sample intervals.

2.3 Installation of the software

The software consists of 3 files: (1) a python program rxcwnn.py,
(2) the definition of the deep neural network in a json file neural-
netcw.json and (3) the network weight factors best modelfast.hdf5,
packed together in a zip-file. To run the program one needs python 3.7
together with packages keras, tensorflow, sounddevice and curses
installed. The easiest way to provide this environment for Windows
10 is to use anaconda

2.3.1 Windows 10

1. Download Miniconda3 from
https://docs.conda.io/en/latest/miniconda.html and run
the latest version of the program. Tick the item ”Just me” and
use the standard installation directory. N.B. No ticks at the
advanced issues.

3



2. From the windows start menu open an Miniconda prompt and
type the command:
mkdir morse

3. Run the command:
cd morse

4. Run the command to build the environment tfenv
conda create -n tfenv tensorflow

5. Activate this environment with the command:
conda activate tfenv

6. In this environment run the command:
pip install –upgrade –user pip

7. In this environment install sounddevice with:
pip install sounddevice

8. In this environment install keras with:
pip install keras

9. In this environment install curses with:
pip install windows-curses

10. Download the file rxcwnn.zip from [9] and unzip it in the
morse subdirectory.

2.3.2 Linux

There are quite a number of linux distributions, each requiring its
own peculiar installation setup. Here the installation process is only
described for two development boards, i.e. the Jetson Nano and the
Raspberry Pi 4.

Jetson Nano

1. Flash a 32 GB micro-SD-card with the JetPack 4.4 image down-
loaded from [7] using installation the procedure given by NVIDIA.

2. Boot the Jetson nano developer kit with connected keyboard and
HDMI monitor and this micro SD-card inserted

3. Follow the first use instructions from [7] to set username and
password

4. Login and start a terminal

5. Follow the installation procedure given in [8] for a tensorflow
version smaller than 2. (version 2 does not work).

6. Run the command:
sudo apt-get install build-essential libssl-dev libffi-dev python-
dev

4



7. Run the command:
sudo pip3 install sounddevice

8. Run the command:
sudo pip3 install keras

9. Run the command:
mkdir morse

10. Download the file rxcwnn.zip from [9] and unzip it in this
morse directory.

Raspberry Pi 4

1. Prepare a 32 GB micro-SD-card image for your raspberry Pi 4
[10] and boot it.

2. Open a terminal and install virtualenv with:
sudo pip3 install virtualenv

3. Make a new directory morse with the command:
mkdir morse

4. Change to this new directory with the command:
cd morse

5. In this directory make a new environment with the command:
python3 -m virtualenv -p python3 cw env

6. Activate the envireonment with the command:
source cw env/bin/activate

7. Now install tensorflow version 2 in this environment as described
in [11], but leave out the –user option en do not use sudo if front
of the pip3 commands.

8. Install libffi-dev with the command:
sudo apt-get install libffi-dev

9. Install module sounddevice with:
pip install sounddevice

10. Install keras with:
pip install keras

11. Download the file rxcwnn.zip from [9] and unzip it in this
morse directory.

3 USE OF THE PROGRAM

1. For Jetson Nano and Raspberry Pi 4 you have to connect a
separate USB sound input device, because they do not have a
builtin soundcard.

5



2. Connect the audio output of your transceiver to the microphone
input of the USB sound device.

3. set the default sound input of the used sound device to this audio
input.

4. run the command:
python3 rxcwnn.py

5. tune your trx to a cw transmission

4 RESULTS

The accuracy of the trained network was established by calculating the
text belonging to the audio of 100 wav-files generated by the program
generate wav files.py and comparing it with their annotation. The
error rate was 6%. Furthermore a number of tests was run with the
program rxcwnn.py installed as described above on an older ACER
INTEL Core(TM)2 Quad CPU Q8200 @2.33 GHz with 4GB of mem-
ory. The line-in input of its soundcard was connected to the phone
output of a FLEX3000 transceiver with an external hardware audio
cable. The FLEX3K was controlled by POWERSDR v2.7.2 running
on the same computer. Following contest signals, the callsigns, reports
and exchanges were compared with the traffic shown by CWSkim-
mer (connected by VAC) running in parallel. Generally there was a
very good agreement. When both programs disagreed the offending
callsigns were looked up in qrz.com and more often than not rxcwnn
was right, although the reverse also occurred sometimes.

In the same way ragchew qso’s were followed. Here it was noticed
that at keying speeds below 15 wpm rxcwnn makes more errors than
CWSkimmer

5 DISCUSSION

The lesser achievements of rxcwnn at low words per minute rates was
attributed to the fixed length in time of the audio files used for the
training: these contain less characters when the keying speed is low.
Training of a network with a smaller range in keying speed, i.e 10 - 20
wpm instead of 10 - 40 wpm however did not improve the situation.
Presumably this problem is a synchronization issue: the audio files
used for the training start and end with a no signal condition whereas
the audio buffer used for the decoding can sometimes start or end
within the middle of a morse character. With low keying speed this
will occur more often. The ”stitching” procedure used in rxcwnn

6



should solve this problem, but further experiments, i.e. using larger
audio chunks should clarify if this really is the case. Extending the
audio buffer however is bound by the increase in processing time and
the increase in the delay between hearing the morse code and seeing
the characters on the screen.

6 ACKNOWLEDGEMENTS

The author is very much indebted to Dr.ir.J.Bos (PE1PUZ) for run-
ning the training calculations on his powerful Ryzen system.

References

[1] Wikipedia, http://en.wikipedia.org/wiki/goertzel algortihm.

[2] Loftur E. J’onasson TF3LJ, https://sites.google.com/site/lofturj/cwreceive.

[3] Hjalmar Skovholm Hansen OZ1JHM, skowholm.com/cwdecoder.

[4] Fábian Tamás Lászlo, https://github.com/netom/morsenet.

[5] AG1LE, http://ag1le.blogspot.com/2019/02/training-computer-
to-listen-and-decode.html.

[6] https://github.com/theailearner/a-crnn-model-for-text-
recognition-in-keras.

[7] NVIDIA, https://developer.nvidia.com/embedded/jetson-nano-
developer-kit.

[8] NVIDIA, https://docs.nvidia.com/deeplearning/frameworks/install-
tf-jetson-platform.

[9] Ties Bos PA0MBO, http://www.pa0mbo.nl/ties/public-
html/hamradio/rxmorsenn.

[10] raspberrypi.org, https://www.raspberrypi.org/downloads.

[11] raspberrypi.org, https://github.com/pinto0309/tensorflow-bin.

7


