
RXAMAPITAYA - DIGITAL SSTV

RECEPTION WITH THE RED-PITAYA

Ties Bos - PA0MBO

April 15th, 2016

Abstract

This paper describes the software RXAMAPITAYA that turns the
credit card sized open source instrument Red-Pitaya (oscilloscope,
specrum analyzer) into a full fledged Software Defined Radio (SDR)
hf-receiver fully equiped to decode digital SSTV signals (hamDRM
standard). It can be used for monitoring DRM SSTV channels conti-
nously on a power budget of less than 10 W.

Keywords: Digital SSTV - Hamradio - DRM - Linux - Red-Pitaya

INTRODUCTION

The popularity of Slow Scan Television (SSTV), the exchange of pic-
tures in QSO’s on the ham bands in a bandwidth of less than 3 kHz,
is rising. This rise can be attributed to a number a favourable factors:

• the growth of digital photography (every smartphone now has a
good camera).

• digimodes in general (SSTV is but one of the many digimodes)
have become much easier to implement: commercial ham equip-
ment generally offers standard interfacing to computer equip-
ment for audio and control signals.

• a wealth of (mostly free) programs is available for the various
digimodes

• the ham Digital Radio Mondiale (DRM) standard for SSTV de-
livers the pictures at the receiving end in the same quality as the
originals (if reception is successful).

1

Quite a number of hams nowadays maintain a web page where they
display their received pictures live. These pages are not only nice to
look at, but they also are valuable to monitor the band conditions and
open up the possibility to obtain reception reports instantaneously.

Running such a web page requires continuous operation of a re-
ceiver and a computer connected to the internet. This document de-
scribes how both these functions can be performed by a single low cost
measurement system called the Red-Pitaya. This credit card sized
board incorporates a fast Analog to Digital Converter (ADC), a Field
Programmable Gate Array (FPGA) and a ZynQ 7010 processsor. The
ADC and the FPGA are programmed to operate as a SDR-receiver.
The Zynq processor runs the operating system Linux and a program
to decode the pictures from the signal the FPGA is tuned to.

The design builds on the extensive work of Pavel Demin [1] for
the SDR receiver part and runs a modified version of the program
RXAMADRM [2] for the decoding of the signal.

For DRM-SSTV three different programs are available and they
are compatible with each other: EasyPal for windows [3] , QSSTV
for linux [4] and TRXAMADRM also for linux [2]. All three pro-
grams use audio signals to and from the soundcard of a computer to
send and receive the binary picture data. With the advent of SDR
receivers/transmitters this audio route of the picture data (or other
digital data for the other digimodes) still has to be followed due to
the requirements of the programs. A trick to circumvent the use of
real cables is to use socalled ”virtual audio cables”, software that be-
haves like an audio device (soundcard) that a program can send data
to or read data from. In this way two separate programs can exchange
binary data.

In the setup described here this inefficient double conversion to and
from audio is circumvented: the SDR-receiver in the FPGA produces
Inphase and Quadrature signals, I/Q - data pairs which are directly
processed to the picture data in the modified RXAMADRM program
which is now called RXAMAPITAYA.

OVERVIEW OF RXAMAPITAYA

The SDR receiver is implemented in the FPGA of the Red-Pitaya. Its
schematic diagram is given in figure 1. The binary code is in the file
myrx31.bit. RXAMAPITAYA loads this code into the fpga, sets the
frequency and starts the receiver.

The DSP code in the FPGA comprises the following processes.
The ADC (analog to digital converter) digitizes the antenna signal
from channel 0 at a sample rate of 125 MHz. This digitized signal is

2

ADC X

DDS

FIR−0 FIR−1
COMB

FIFO

sincos

Q

I I

Q

I

Q

I

Q
IQ

IQ

125 MHz

40 kHz 24 kHz 12 kHz

12 kHz

CIC

Figure 1: SDR receiver in FPGA

multiplied by a cosine and sine signal produced in the DDS (Direct
Digital Synthesizer). In the next stages the sample rate is reduced
in three steps from 125 MHz to the final 12 kHz. Each reduction of
the sample rate is preceeded by lowpass filtering to comply with the
Nyquist criterion. The final bandwidth at the output of the FPGA
is around 3 kHz. The filtering is identical for the I (Inphase) and Q
(Quadrature) signals. The output is delivered to the Zynq processor
via a FIFO buffer (First In First Out). The FPGA delivers this output
to the Zynq processor at a fixed memory address together with a count
of the number of I/Q samples that are available in the FIFO at the
time of reading this count. In this way synchronization with the data
stream can be accomplished.

The processing of the I/Q datastream at a sample rate of 12 kHz
is performed in the program drmtst that runs in the Zynq processor
under linux. This program reads the I/Q data from the FIFO and
processes the data to a picture file. Its operation is described in the
document [5]. However there are some differences. First of all there
is no conversion of audio to I/Q data. This version of drmtst can
operate directly on the I/Q data. Moreover the SDR receiver in the
FPGA has to be tuned. This information is read by drmtst as a
command line parameter.

The decoded pictures are saved by the program in a subdirectory
called picsrx and are also presented to the user in a graphical user
interface (GUI) together with information about the progress of the
reception. This presentation task is performed by a separate program
with the name rxamadrm.tcl which is written in the script language

3

Tk/Tcl. It also provides the way to set the rx-frequency and based on
this either a lower or upper sideband version of the program drmtst is
chosen to process the data.

INSTALLATION AND USE

The software is available as a compressed image with which a 4GB mi-
croSDcard can be prepared. This 4GB SDcard can then be inserted
into the Red-Pitaya and after applying power it will run a Linux De-
bian version for the Zynq processor composed by Pavel Demin [1].
After booting it starts an SSH-server and a VNC-server automatically
to enable remote access to the system.

Preparation of the 4GB SDcard is performed with the following
steps:

1. Insert the card into a PC running some linux distribution

2. Now find out how this card is mounted with the following com-
mands:
sudo su <return>

mount <return>

Look for entries like /dev/sdx on /media/.../... where x is some
character like b,c,d, etc. If theres is more than one partion on
the same device , i.e. /dev/sdf1 and /dev/sdf2 write down both
/media entries.

3. dismount these /media-entries, i.e. with
umount /media/....

umount /media/....

4. Now untar the SD-card image and copy it to the SD-card with:
tar -xvzf rxamapitayav0 4.tgz

dd if=rxamapitayav0 4.img of=/dev/sdx bs=4M

with sdx the devicename you saw in the mount command (use
a single character, i.e. /dev/sdf in the former example). Take
great care to get the correct device name or you will destroy your
running linux system. Wait for the dd-command to finish.

Now you can remove the SD-card from the guest system and put
it into your Red-Pitaya and power up the latter after connecting it to
a local network. Also connect an antenna to the ADC connector at
the far left of the front side. To access the system now running on the
Red-Pitaya use a VNCViewer on the guest computer. For this you
need to know its IP-address it has gotten from the DHCP server of
this local network. You have to find out what it is by accessing this
DHCP server on your router. The password is ”changeme”.

4

To start and view the operation of the SDR-receiver and the decod-
ing program rxamadrm, use the following commands in the terminal
that opened in your VNCVIEWER:

cd rxamapitayav0 4/linux <return>

./startdrm.sh <return>

This will show a waterfall window and a window which shows the
progress during the reception of a DRM-SSTV signal. At the bottom
of this window you can make a choice between three standard DRM-
SSTV frequencies. Operate this button at least once after starting the
program to make sure is has chosen the right sideband program.

DRM-SSTV is not a small signal mode. You will need rather strong
signals (S7 and up) for succesful decodes. As the ADC has a high Z
input, best results are obtained with a high Z antenna connection. A
standard dipole will not give the best results. For a dipole antenne
use some stepup hf-transformation.

With the button ”FTP” you can set up the communication to a
web page on the internet that can display the images you received
without user interaction by filling out the form and setting ftp on.
If you are afraid to be embarrassed by showing all received pictures
you can monitor the pictures coming in yourself and upload only the
wanted ones by pressing the ”UPLOAD LAST” button of this window.

RESULTS

The system has been used to monitor the 40 meter band DRM-SSTV
channel of 7058.00 kHz succesfully over the run of a few weeks. The
ADC channel 0 was connected to an endfed wire antenne 20 m long
at a height of about 4 - 6 meters. Normal and hybrid mode pictures
were received from PA-, DL-, F- and I-land on this antenna. For
comparison trxamadrmv3 6 was run on a normal PC connected to
a FT2000 via a soundcard interface. The antenna connected to the
FT2000 was a W3DZZ dipole also at about 4 - 6 meters height.

Both systems gave more or less the same number successful decodes
as can be seen from table 1 for the evening of April 22nd 2016.

5

References

[1] pavel-demin.github.io/red-pitaya-notes.

[2] http://pa0mbo.nl/ties/public html/hamradio/rxamadrm.

[3] http://www.vk3evl.com.

[4] users.telenet.be/on4qz.

[5] http://pa0mbo.nl/ties/public html/hamradio/rxamadrm/rxamanew.pdf.

6

Table 1: Comparison rx-results Red-Pitaya vs FT2000 (number of pictures
received)

Station Red-Pitaya - end fed 20 m wire FT2000 - W3DZZ
OE1GOW 33 36
DB2HS 4 5
DD9FY 6 7
DK3UD 12 11
Dl6BL 6 6

DL7VOE 3 -
F4BMT 1 3
F4EFL 2 -
F5LWD 1 -
G8IC 10 18

IZ1MKE 11 7
M0HWM 1 1
M0JGM 1 -
M0KLL 1 2
M0SSBB 5 -
OE3ODW 7 10
PA3ADE 1 -
PA0VER - 3
PD0CIF 1 -
PE1ACB 8 10
OE2KNS - 1
IZ3JZP - 1

7

