
RXAMADRM - A LINUX PROGRAM FOR

DIGITAL SSTV

Ties Bos - PA0MBO

February 12th, 2014

Abstract

A linux program was developed for the reception of digital SSTV
picture transmissions conforming to the HAM DRM standard as de-
veloped by HB9TLK and used in the Windows programs WINDRM,
DIGTRX and EASYPSL. It is modeled after the MATLAB program
DIORAMA for the reception of commercial DRM broadcast stations.

Keywords: Digital SSTV - Hamradio - DRM - Linux - Reed/Solomon

1 INTRODUCTION

The program RXAMADRM can be used to receive (picture) files in
the HAMDREAM standard as developed by HB9TLK [1]. In con-
trast to the programs based on HB9TLK’s code like WINDRM [2],
EASYPAL [3] and DIGTRX [4], RXAMADRM runs under Linux and
its source code is available. It is published under the GNU General
Public License (GPL), so you can freely modify and improve it.

The code was not built from scratch, but is based on the program
DIORAMA that was written by Andreas Dittrich and Torsten Schorr
[5] from the university of Kaiserslautern. DIORAMA is written for
MATLAB, a high level interpreter for complex mathematical opera-
tions with very nice graphical and GUI-tools.

Initially DIORAMA was adapted to the amateur standard. How-
ever for amateur use MATLAB is rather expensive and to circumvent
the use of MATLAB, the MATLAB-specific code was translated to
standard C. The choice of DIORAMA as a starting point instead
of DREAM (on which all existing Ham DRM SSTV programs are

1

founded) was based on the paper ”Digital Radio Mondial (DRM) Re-
ceiver using MATLAB” by T. Schorr [6] et.al. Moreover DIORAMA
turned out to give a somewhat better performance in the reception
of the BBC station on 1296 kHz when compared to DREAM under
marginal conditions.

In the design of RXAMADRM the digital signal processing (DSP)
code is strictly separated from the Graphical User Interface (GUI)
code. The DSP part is a standalone program written in standard
C (drmtst). The GUI part is a separate program written in the
script language Tk/Tcl (rxamadrm.tcl). Communication between
the programs is one way via standard input/output, i.e. from drmtst
to rxamadrm.tcl. This simplifies debugging and allows an easy way
to develop much more sophisticated Graphical User Interfaces in lan-
guages/systems other than Tk/Tcl.

For compatibility with the popular DRM/SSTV program EasyPal
Reed/Solomon decoding was added, using separate programs for the
various degrees of encoding. As of version 1 5 RXAMADRM generates
a socalled bsr.bin file when a picture file is not received completely.
This file conforms to the format used in EasyPal.

2 DESCRIPTION OF THE PROGRAMS

2.1 The DSP program drmtst

The signal processing tasks that must be performed are:

1. acquisition of 400 msec worth of sound data

2. presentation of the signal in the audio passband of the receiver
in a ”waterfall” picture

3. demodulation/equalization

4. channel decoding

5. source decoding

These signal processing tasks are gathered in one standalone program
called drmtst. Its main routine has an infinite loop in which the
subroutines that perform these 5 tasks are executed in sequence re-
peatedly.

2.1.1 acquisition of sound data

The program drmtst is a real-time program, it calculates its result
(the image file that was sent) during the reception of the signal. As
the audio signal comes from the receiver continously, but has to be

2

analyzed in chunks, some way has to be found to read the sound data
into the computer and analyze it simultaneously.

In most Linux systems the recording of sound input via a sound-
card is handled by the ALSA soundsystem. This system sees to it that
the sound signal which is presented to the microphone or line input
connector of the soundcard is sampled by an Analog to Digital Con-
verter (ADC) and stored in an internal buffer. Application programs
like drmtst have to see to it that the content of this internal buffer is
processed before it overflows and part of the incoming signal is lost.
Unfortunately the size of the internal buffer of ALSA is much smaller
than corresponds to the duration of the sound that we need to be able
to process it. The information contained in the sound signal in DRM
is organized in socalled frames with a duration of 400 ms. We need at
least this amount of recorded sound to be able to decode some data
from it. If the recording is not synchronized with the frame we need
even more.

In drmtst this problem is tackled by providing an extra layer of
buffering between ALSA and the processing of the recorded sound.
This bufffering should take place at the moment that ALSA’s internal
buffer has not yet overflowed and during the time that the processing
of the last completely received frame can still be in full swing. The
ALSA sound system provides a way to signal that its internal buffer
needs attention. Via the operating system Linux this signal can be
used to trigger an asynchronous handler routine. In drmtst this
asynchronous signal handler fills a (larger) buffer in drmtst itself by
interrupting the work it was doing. As soon as the transfer of sound
samples from ALSA’s internal buffer to drmtst is completed, drmtst
resumes the work it was doing.

Synchronization between ALSA and drmtst now is simple: drmtst
only has to check whether there is enough recorded sound in its own
buffer. If not, it should wait until there is. On the other hand, if
drmtst’s own buffer overflows before it is emptied, the processing of
the former data has taken too long. If the latter situation arises, stop-
ping other tasks running on the computer may help; if not, the only
thing to do is to look for a faster CPU.

2.1.2 generation of waterfall picture

The incoming audio is sampled at 48000 Hz. To construct a waterfall
display of its frequency content, fast fourier transform (fft) is used
after lowpass filtering and decimation the signal by a factor 4. Using
a 2048 point fft then gives a frequency resolution of 11.7 Hz. With a
window of 256 pixels a waterfall comprising 0 to about 3000 Hz of the
signal spectrum can be displayed using the first 256 points of the fft.

3

The audio data is acquired in bursts of 400 ms. The waterfall
display is refreshed in this rythm, so it will appear somewhat ”jerky”.
This is inherent to this simple setup.

2.1.3 demodulation

For the demodulation the DIORAMA polyphase filters are used. As
these operate on a 12000 Hz IF signal, the audio acquired in step
1 must be converted to a USB signal at an IF of 12000 Hz. The
ARRL Handbook [7] shows how this can be done by using a Hilbert
transformer in a half complex mixer.

The FIR-filters for the Hilbert transformer in drmtst were de-
signed with the use of MATLAB. The design was started with a 83
tap low pass filter with a passband frequency of 3000 Hz and a stop-
band frequency of 3300 Hz. This lowpass filter was shifted to a band-
pass filter with a passband from 200 to 3200 Hz by multiplying with
a complex exponent at 1700 Hz. The resulting in-phase and quadra-
ture filtercoefficients are incorporated in the program in the routine
monorec.c in the variables B Inphase[83] and B Quad[83] respec-
tively.

The remaining steps in drmtst, i.e. channeldecoding and sourcede-
coding are a straightforward translation of the DIORAMA code. For
their description see the DIORAMA papers.

2.2 The Graphical User Interface

The GUI is implemented in Tk/Tcl in the script rxamadrm.tcl and
is shown in figure 1. The setup of this script is fairly straightforward.
It starts by loading a number of required packages, i.e. Tk, Expect
and Img. Then follows the definition of a number of subroutines:

• set snd - sets the ALSA number of the sound device to be used
to acquire the input signal

• file admin - sets a number of variables connected with the name
of the file to be stored with the (picture) data

• rsdecode - spawns the correct routine for reed/solomon decoding
of the file that was received

• dispingui - sets the variables that govern which picture file will
be displayed in the GUI

• cleanup incomplete - removes files with invalid picture data

• dispfile - reads the extension of the received file and takes the
correct measures to display it if possible

4

Figure 1: GUI in picture mode

5

Next the layout of the GUI is defined using frames and various Tk wid-
gets. After spawning the drmtst program an endless loop is entered
in which expect interprets the data sent to stdout by this program
and changes the contents of the various widgets accordingly. When
files with the reed/solomon extensions rs1, rs2, etc. are received, the
correct decoding program is spawned before trying to display the data
as a picture.

2.3 Reed/Solom decoding programs

The Reed/Solomon decoding programs rs1decoderas, rs2decoderas,
... use routines developed by Phil Karn (KA9Q) [8]. These programs
use information about missing segments in the received file which is
saved by drmtst in a diskfile called erasures.dat from which the
positions of the erasures in the data blocks are calculated. The use of
this information doubles the number of errors that can be corrected.

Table 1 shows the parameters for the four Reed/Solomon decoders.
For the offline decoding of Reed/Solomon coded files the programs

Table 1: Reed/Solomon parameters

type block length data length
rs1 255 224
rs2 255 192
rs3 255 160
rs4 255 128

rs1decode, rs2decode, etc. can be used which do not need the
missing segment information. However these programs can correct
only half as much errors.

2.4 Reception of EasyPal Hybrid mode pic-
tures

Since August 2013 the Windows program EasyPal offers the use of
a socalled hybrid mode in which only a the name of a picture file
is sent by radio. To display this file it must be downloaded from a
central fileserver. RXAMADRM automates this process using the
Tk/Tcl-script hybridget.tcl.

6

3 INSTALLATION

RXAMADRM is now part of the archive trxamadrmv3 5.tgz.
For installation instructions see the document trxamadrm.pdf.

4 USING RXAMADRM

Connect the audio output of your transceiver to the mike input channel
of your soundcard, start your receiver and tune it to a SSTV frequency
using the correct sideband. Assuming the software has been started
as described in the document trxamadrm.pdf with the command
./startdrmtrx.sh you will see the GUI as shown in figure 1 together
with a window that shows a waterfall picture of the audio passband
of your transceiver.

To start receiving pictures make sure you set the right sound device
with the button at the bottom right of the GUI. This setting will
be retained in a file called rxamadrm.ini which is placed in your
$HOME directory. Now left click your mouse on the radiobutton
labeled ”PSD”. A graph called ”power spectral density” will appear
(see figure 2). Adjust the audio out of your transceiver to give a
top somewhat above the horizontal crossbar. Wait for a DRM SSTV
signal to come in and fine tune it by aligning the three bright frequency
pilots in the waterfall with the three black vertical markers at the top
of the waterfall window (see figure 3). Depending on the quality of
the signal you will now see the synchronization bars Time, Frame,
FAC and MSC turn green. As soon as FAC reaches a steady green
the data displayed in the upper left block and the top three items of
the middle left block will get sensible values.

The top block shows the characteristics of the received signal:

• Mode - the mode of the drm signal: A, B or E

• QAM - the number of modulation states: 64, 16 or 4

• Prot - the protection level: normal or high

• Intlv - the interleaving distance: long, short

• BW(kHz) - band with of the received signal

• SNR - the Signal to noise ratio in dB

The middle block shows the offset of the DC-carrier of the signal
(should be around 350 Hz), the relative error of the sampling frequency
of the ADC in the soundcard in ppm and the callsign of the sending
station.

When the MSC item turns to a steady green, segments are being
decoded successfully. When a complete header has been found the

7

Figure 2: GUI showing PSD with correct audio level

Figure 3: Waterfall window with DRM signal

8

Figure 4: GUI showing MSC-constellation

item totseg shows the total number of segments of the file that is
being transmitted. The item #seg shows the number of the last
segment that was received correctly. When things go smoothly you
will see this item increase steadily.

The radiobuttons at the lower half of the middle block at the left
side of the GUI allow you to choose what will be displayed in the right
handside window of the GUI

• FAC - the constellation of the Fast Access Channel Data

• MSC - the constellation of the Main Service Channel Data

• PSD - the power spectral density of the received signal

• IMG - the last image that was received correctly

FAC and MSC will only be active when their corresponding sync sign
is green. The MSC displays is given in figure 4. When you see such
a regular dot pattern the quality of the signal is perfect, but you will
be surprised which irregularities in the MSC constellation patterns
still give good copy. At the bottom left of the GUI there is a box
showing the name of the last file that was received, either completely
correct or else incompletely. In the first case the file will be in the
pics subdirectory, in the second case it will be in the incomplete
subdirectory.

The dropdown button labeled ”SET SOUND DEVICE” at the
lower right of the GUI allows to set the ALSA number of the soundcard
that is to be used for the input of the transceiver audio.

9

4.1 FTP

The GUI of RXAMADRM has a button labeled ”FTP”. When
pressed it opens an entry form with a number of buttons. Use the
entry boxes to give the details for ftp-ing your provider, i.e. your
username and password, plus the name of the server that you want
to address. Depending on the organization of your website you will
also have to provide the name of the directory of the page where you
want to upload the images. The button ”xfer method” opens a pull
down menu with choices between normal ftp, secure ftp and secure
copy. Choose the one that is supported by your provider. If you want
something more sophisticated it is not too difficult to change the script
ftpput.tcl in the directory trxamadrmv3 5/linux. It shows lines
with the prompt to be expected from your providers server followed
by the commands to be given in sequence.

After pressing the buttons ”SET FTP ON” and ”CLOSE” the FTP
window disappears, but when a picture has been received successfully
it will be uploaded to your website automatically. The information
will be stored in a file called ftp.ini and is placed in your $HOME
directory. Be careful in standalone use of this feature, as you never
know what kind of pictures will be uploaded. Manual upload can be
accomplished via the button ”UPLOAD LAST” in the FTP window.

4.2 Progress status bar

As of version trxamadrmv3 2 the GUI has a bar showing the progress
of the reception of a picture. Initially this bar extends over the full
width of the rxamadrm windown. As soon as the total number of
segments for the file under reception has been established the bar is
delimited at the right handside to the correct size. The signal to noise
ratio for a segment that was received successfully is show by the height
of a vertical green line ranging from 5 dB at the bottom of the bar
to 25 dB at its top. Missing segments show up in this bar as white
gaps. The complete bar is whitened out when the start of a new file
is detected. For fixes gaps are filled in and parts of the graph are
overwritten.

4.3 Log files

When started as described above rxamadrm will produce two sepa-
rate logfiles, i.e. dbgrxama and rxlog.txt. The first contains all info
that was produced by drmtst as well as all output produced by the
GUI and can be used to trace all events. For normal use rxlog.txt is

10

far more useful and shows successful names of received and decoded
files and SNR data both with date/time stamps.

4.4 Hybrid mode

To be able to receive pictures sent by EasyPal in the socalled hybrid
mode you have to switch on this mode by pressing the button with
the label ”HYBRID” and fill out the form that appears and press
its ”SET HYBRID ON” button. For interacting with stations using
EasyPal you have to enter the access data for the general ftp-server
of VK4AES or agree upon a particular server to use with the other
station(s). The data are also used in sending ”hybrid” pictures. The
text of this buttons changes to ”SET HYBRID OFF” after which you
can close this form by pressing its button ”CLOSE”. It you want to
switch off this mode later press the button ”HYBRID” in the main
menu again and press the button ”SET HYBRID OFF” and close the
window again.

4.5 Computer to computer testing

During the development of RXAMADRM the audio signal generated
by DIGTRX running on a second computer was used. The audio
line output of the soundcard in the computer running DIGTRX was
connected to the microphone input of the Linux system running RXA-
MADRM. All DRM-modes A,B and E were checked with both settings
of interleave (long or short), with both settings of protection (Normal
or Low) and all possible QAM-modes. SNR was over 38 dB in this
set up. Transmitted files were jpg’s. Under all circumstances the re-
ception was without missing segments. A screenshot of the reception
of a 50 kB file in mode A with QAM-16 is given in figure 1.

4.6 Testing on the 80 meter band

Figure 5 is the first picture I received using RXAMADRM on the
band at 10 dB SNR. It was a Reed Solomon coded file 090301202608-
Clip.rs2 of 14025 bytes from the station G8ITH.

Figures 6 and 7 show some more received pictures. I have no data
on SNR because they were received in the standalone mode of drmtst.
I just found them in the ./pics directory after I left the program on
for some time.

11

Figure 5: Picture sent by G8ITH

Figure 6: Picture sent by DF2L on 80 m on March 4th 2009

12

Figure 7: Picture sent by DF2ML on 80 m on March 5th 2009

5 DISCUSSION

The main reason to develop RXAMADRM was to provide the Linux
community of hams with a good starting point to develop their own
drm-based digital SSTV software. Linux offers a large variety of GUI-
builders of which Tk/Tcl is just one. With toolkits like Gtk+ it is
possible to build very sophisticated screens with attractive readouts,
display of images and controls. Especially when these toolkits are com-
bined with scripting languages they make it easy to automate many
tasks like logging, web publishing, generating e-QSL’s etc. RXAM-
ADRM offers all required real-time data-acquisition and processing to
convert the lf audio output of a receiver tuned to a ham DRM SSTV
station to a diskfile of the transmitted image that is an exact copy of
the one the sending station used.

The rxamadrm.tcl script shows an example of how this func-
tionality can be ”dressed” with a graphical user interface that can be
customized to one’s personal liking. It also allows to supplement the
system with convenience functions like logging, archiving of pictures,
etc.

6 ACKNOWLEDGEMENTS

The author is very much indebted to David Ranch (KI6ZHD). Without
Davids help rxamadrm would still be a barebones DSP program

13

for decoding DRM SSTV. Its current features, i.e. Reed/Solomon
decoding, display of .txt-files, the waterfall, the possibility to set the
sound input device from the GUI, etc. are not only all his ideas,
he also tested my attempts to implement these features until they
worked. (Remaining bugs are of course my responsibility!). I also
want to thank ON4QZ, who has used part of rxamadrm-code into
his fine program QSSTV and tested rxamadrm very thoroughly. I
hopefully corrected the errors he found without introducing new ones.
Dr OM Johan many thanks.

References

[1] Cesco HB9TLK, http://www.qslnet.de/member/hb9tlk/.

[2] http://n1su.com/windrm.

[3] VK2CZU, http://www.users.on.net/ trevorb/.

[4] http://www.tima.com/ djones/hamdrm.htm.

[5] T. Schorr A.Dittrich, http://nt.eit.uni-kl.de/forschung/diorama.

[6] T.Schorr A.Dittrich W. Sauer-Greff R.Urbansky, http://www.fh-
kl.de/ drm/dokumente/sonstige/ieee sp2005 diorama.pdf.

[7] R. Dean Straw, editor. The ARRL Handbook For Radio Commu-
nications. ARRL, 2006.

[8] Phil Karn, http://www.ka9q.net.

14

APPENDIX

LIMA-SDR

For use with the LIMA-SDR a special version of rxamadrm has been
developed which is called rxlimadrm. This version samples the I/Q
- signals generated by the Lima-receiver instead of the normal audio
signal from a non-SDR receiver. For this a stereo-input of the sound-
card is needed, i.e. the line-input. Moreover the software now also
has to tune the receiver using the correct sideband. The LIMA-SDR
is controlled by an AVR/USB-processor that connects to the USB-bus
of the computer. A separate program usbio2 has been developed for
the task to address the AVR/USB-processor and the GUI has been
extended with an entry box for setting the rx-frequency and two radio
buttons for the sideband choice.

To compile rxlimadrm your linux system now needs the libusb-
dev package installed. When using rxlimadrm not being root, some
special measures are necessary to allow access of the USB-device of
the LIMA-SDR. The following steps describe how to obtain this per-
mission:
cd /rxlimadrm

su

give your root password

chown root usbio2

chmod u+s usbio2

Using rxlimadrm

Change directory to the subdirectory rxlimadrm and give the com-
mand:
./startlima

Set the frequency of the DRM-SSTV channel you want to receive in
the entry box at the right hand side of the button labeled ”SET QRG”
and make your choice between lsb and usb via the radio boxes labeled
as such. Then press the button ”SET QRG” and the reception will
start at the chosen frequency.

While running rxlimadrm qsy can be established by changing
the frequency in its entrybox and pressing the button ”SET QRG”,
just changing the numbers will not send the changes to the LIMA.
Changing the chosen sideband will automatically invoke a change of
the settings of the LIMA-SDR (and a change of the DSP-filters).

15

