
RXAMADRM - A LINUX PROGRAM FOR

DIGITAL SSTV

Ties Bos - PA0MBO

April 12th, 2012

Abstract

A linux program was developed for the reception of digital SSTV
picture transmissions conforming to the HAM DRM standard as de-
veloped by HB9TLK. It is modeled after the MATLAB program DIO-
RAMA for the reception of commercial DRM broadcast stations.

Keywords: Digital SSTV - Hamradio - DRM - Linux

INTRODUCTION

The program RXAMADRM can be used to receive (picture) files in
the HAMDREAM standard as developed by HB9TLK [1]. In con-
trast to the programs based on HB9TLK’s code like WINDRM [2],
EASYPAL [3] and DIGTRX [4], RXAMADRM runs under Linux and
its source code is available. It is published under the GNU General
Public License (GPL), so you can freely modify and improve it.

In the HAMDREAM standard published by HB9TLK [5] some el-
ements are missing, especially the θ1024-values for the E-mode. These
values were obtained by analyzing the signals generated by DIGTRX.
The code was not built from scratch, but is based on the program
DIORAMA that was written by Andreas Dittrich and Torsten Schorr
[6] from the university of Kaiserslautern. DIORAMA is written for
MATLAB, a high level interpreter for complex mathematical opera-
tions with very nice graphical and GUI-tools.

Initially DIORAMA was adapted to the amateur standard. How-
ever for amateur use MATLAB is rather expensive and to circumvent
the use of MATLAB, the MATLAB-specific code was translated to
standard C.

1



An important addition in RXAMADRM compared to DIORAMA
is its ”frontend”. DIORAMA uses a 12 kHz IF signal for input, which
necessitates the use of special hardware. In ham practice it is easier to
use the received audio signal directly from the receiver. RXAMADRM
transforms the acquired audio signal from the receiver in software to a
12 kHz IF which can be processed by the original filter/demodulator
code of DIORAMA that has shown its worth.

The choice of DIORAMA as a starting point instead of DREAM
(on which all existing Ham DRM SSTV programs are founded) was
based on the paper ”Digital Radio Mondial (DRM) Receiver using
MATLAB” by T. Schorr [7] et.al. Moreover DIORAMA turned out
to give a somewhat better performance in the reception of the BBC
station on 1296 kHz when compared to DREAM under marginal con-
ditions.

Because RXAMADRM is receive-only, its user interface could be
kept simple. All pertinent data of the decoding process are shown
during receive, the most important being the Power Spectral Density
(PSD) of the received signal, TIME SYNC, FRAME SYNC, FAC
CRC and MSC CRC. The PSD, the SNR of the received signal and
the DC-offset of the received signal allow for easy tuning.

The screen of RXAMADRM shows either the last picture received,
the FAC- or MSC-constellations or the PSD. The choice is made via
radiobuttons.

Figure 1 shows the screen with a received picture on display, whereas
figure 2 shows the MSC-constellations.

The graphical user interface (GUI) was developed with Tk/Tcl as
a frontend for the console oriented C-program that takes care of the
decoding of the received signal to an image that is stored on disk.
The latter program can run standalone and then just fills the picture
directory on disk with image files that happen to be received correctly.

Tk/Tcl is also used for displaying the image files that are received.
This limits the images that can be displayed by RXAMADRM itself
to image formats that are supported by Tk/Tcl, i.e. bitmap- and
gif-files. If the package Img, that is freely available, is installed into
Tk/Tcl much more formats can be accommodated.

In the remainder of this paper the signal processing program and
the Tk/Tcl GUI are described, instructions for their installation and
use are given and some results of its use are presented. The fron-
tend signal processing that allows the use of the audio output of your
receiver directly, is described in some detail, as this is new and not
modelled after the DIORAMA code. Finally some suggestions are
given for (future) possible developments/changes.

2



Figure 1: GUI in picture mode

3



Figure 2: GUI showing MSC-constellation

OVERVIEW OF RXAMADRM

The signal processing tasks that RXAMADRM has to perform are
organized in a number of modules, each in a separate soubroutine or
procedure.
RXAMADRM follows the organization of DIORAMA:

1. acquisition of 400 msec worth of sound data

2. demodulation/equalization

3. channel decoding

4. source decoding

These signal processing tasks are gathered in one standalone program
called drmtst. Its main routine has an infinite loop in which the
subroutines that perform these 4 tasks are executed in sequence re-
peatedly. The code of RXAMADRM follows the DIORAMA code
with one exception and this concerns the handling of incompletely re-
ceived files in the source decoding part. This will be described later.
Those parts of RXAMADRM that are straightforward translations of
DIORAMA’s MATLAB-code into C-code will not be described here;
for this the reader can consult [7]. In the following only the Linux and
hamradio specific details of RXAMADRM are given.

Besides the signal processing tasks, RXAMADRM offers a (bare-
bones) GUI that allows the user to view the progress and the quality
of the reception of the SSTV images. The code for this GUI is written
in Tk/Tcl and is strictly separated from the signal processing code.
This code is in the file rxamadrm.tcl.

4



PROGRAM DETAILS

Real-time aspects

RXAMADRM or rather drmtst is a real-time program, it calculates
its result (the image file that was sent) during the reception of the
signal. As the audio signal comes from the receiver continously, but
has to be analyzed in chunks, some way has to be found to read the
sound data into the computer and analyze it simultaneously.

In most Linux systems the recording of sound input via a sound-
card is handled by the ALSA soundsystem. This system sees to it that
the sound signal which is presented to the microphone or line input
connector of the soundcard is sampled by an Analog to Digital Con-
verter (ADC) and stored in an internal buffer. Application programs
like RXAMADRM have to see to it that the content of this internal
buffer is processed before it overflows and part of the incoming signal
is lost. Unfortunately the size of the internal buffer of ALSA is much
smaller than corresponds to the duration of the sound that we need to
be able to process it. The information contained in the sound signal
in DRM is organized in socalled frames with a duration of 400 ms.
We need at least this amount of recorded sound to be able to decode
some data from it. If the recording is not synchronized with the frame
we need even more.

In RXAMADRM this problem is tackled by providing an extra
layer of buffering between ALSA and the processing of the recorded
sound. This bufffering should take place at the moment that ALSA’s
internal buffer has not yet overflowed and during the time that the
processing of the last completely received frame can still be in full
swing. The ALSA sound system provides a way to signal that its
internal buffer needs attention. Via the operating system Linux this
signal can be used to trigger an asynchronous handler routine. In
RXAMADRM this asynchronous signal handler fills a (larger) buffer
in RXAMADRM itself by interrupting the work it was doing. As
soon as the transfer of sound samples from ALSA’s internal buffer to
RXAMADRM is completed, RXAMADRM resumes the work it was
doing.

Synchronization between ALSA and RXAMADRM now is simple:
RXAMADRM only has to check whether there is enough recorded
sound in its own buffer. If not, it should wait until there is. On
the other hand, if RXAMADRM’s own buffer overflows before it is
emptied, the processing of the former data has taken too long. If the
latter situation arises stopping other task running on the computer
may help; if not the only thing to do is to look for a faster CPU.

5



Audio frontend

The DIORAMA (and DREAM) software is designed to operate on
an 12 kHz IF. To be able to use this software you need to offer the
signal of interest at this 12 kHz IF to the soundcard. Generally this is
realised by a small piece of hardware that mixes the 455 kHz IF from
the receiver with an oscillator signal at 467 kHz. To be able to use
the audio output of a receiver with the demodulator/filter software
as designed in DIORAMA the audio of the receiver should be shifted
to this 12 kHz IF after it has been sampled by the soundcard. The
ARRL Handbook [8] shows how this can be done by using a Hilbert
transformer in a half complex mixer.

The FIR-filters for the Hilbert transformer in RXAMADRM were
designed with the use of MATLAB. The design was started with a
83 tap low pass filter with a passband frequency of 3000 Hz and a
stopband frequency of 3300 Hz. This lowpass filter was shifted to a
bandpass filter with a passband from 200 to 3200 Hz by multiplying
with a complex exponent at 1700 Hz. The resulting in-phase and
quadrature filtercoefficients are incorporated in the program in the
routine monorec.c in the variables B Inphase[83] and B Quad[83]
respectively.

Graphical User Interface

As stated above, the signal processing in RXAMADRM is strictly sep-
arated from the GUI. All signal processing work is done in the stan-
dalone program drmtst that operates autonomously. This program
creates a separate file on disk for each file that it receives correctly,
either a picture or any other file. These files are placed in the sub-
directory ./pics. Furthermore drmtst determines the DRM-mode,
bandwidth, the type of QAM modulation, the interleaving, protection
mode, tuning offset and SNR of the signal and prints these data to
standard output.

The GUI is implemented in Tk/Tcl in the script rxamadrm.tcl.
This script starts drmtst and pipes its standard output into this
script. The data produced in drmtst is now intercepted by the script
and put into variables. These variables in their turn can then be used
to construct a nice screen in which the progress of the reception of
the images or files can be visualized. If you don’t like the text output
of drmtst continously scrolling on your terminal screen you can start
the program with the script startdrm that redirects this output to
the bitsink /dev/null.

If you use drmtst on its own you can redirect its standard output
to a diskfile and later see all its data with the aid of some editor. If

6



Figure 3: PSD - no signal - volume OK

you tune your receiver to one of the standard digital SSTV frequencies
and start drmtst in standalone mode and leave it on, the subdirec-
tory ./pics fills up with the received files which you can then inspect
with some external viewing program or even publish on your website
automatically. From version v0 2 rxamadrm also stores files when
segments are missing due to qrm or qsb. If the number of missing seg-
ments is not too big and the file was reedsolomon coded the original
file can be recovered by one of the programs rs1decode, rs2decode,
rs3decode or rs4decode. These programs and their source code are
in the root directory of the rxamadrm distribution. The files with
missing segments are stored in the subdirectory ./incomplete.

Generally it will be more fun to follow the progress of the recep-
tion of a picture, see the actual signal to noise ratio (SNR), have
some aid in tuning, view the received image as soon as it is available,
etc. In RXAMADRM these user interface functions are provided by
rxamadrm.tcl. This script interprets the text messages printed by
drmtst and displays the pertinent data. Some data like the MSC and
FAC constellation are presented in the form of a graph. These graphs
are shown one at a time. You can choose which one is displayed by
activating one of the radio buttons.

Accurate tuning can be accomplished by watching the PSD graph,
the DC-tuning offset (should be around 350 Hz) and the SNR (should
be maximized). The PSD graph is also useful for setting the volume
of the soundcard input. With receiver noise only, adjust the volume
to give the top of the peak somewhat above the horizontal crossbar
(figure 3). When tuning a drm signal adjust for 350 Hz offset and

7



Figure 4: PSD - signal tuned OK

a sharp PSD peak. When the drm signal is OK the PSD peak will
be sharp pointed with no more than 3 - 4 dots left and right of the
vertical center line (figure 4). If side humps appear at the bottom of
the PSD peak, the volume should be lowered (figure 5).

Rxamadrm.tcl uses some features that are not present in the stan-
dard Tk/Tcl distribution. You will also need the packages Expect
and Img. These can be downloaded from the internet. Expect is used
in the decoding of the printed output of drmtst while Img allows the
direct viewing of other image format files besides the standard ones
in Tk/Tcl (only gif and bitmap).

Installation

To install rxamadrm untar and unzip the rxamadrmv0 4.tgz archive
in your home directory. This process will create a subdirectory called
rxamadrmv0 4 where the sources as well as the executables can be
found. To be able to run the program the alsa soundsystem should be
installed. In most linux distributions this will be provided. Further-
more the following dynamic link libraries will be needed:

• libasound

• libz

• libfftw (version 2.0.5 )

For the graphical user interface Tk/Tcl is needed and thus should be
installed on your linux system. The rxamadrm.tcl script calls the

8



Figure 5: PSD - signal too loud

wish-interpreter of Tk/Tcl. The name and place of this interpreter
depends on the version of Tk/Tcl. Try to find it (by the command
which wish) and change the first line of the script rxamadrm.tcl if
/usr/local/bin/wish8.5 is not OK.

To be able to show jp2-pictures in the GUI, rxamadrm needs the
program jasper. Most linux distributions have it, if yours does not
have it, install it.

If you want to compile rxamadrm yourself you will also need the
development packages for these libraries. A Makefile for this compila-
tion is included in the source directory.

For OpenSuse use libdfftw and change the Makefile accordingly.
Moreover in the files channeldecode.c, demodulate.c, drm.h, getofdm.c,
getofdmsync.c the sourcecode should be changed to include the file
dfftw.h and not the file fftw.h.

Before starting the program check the contents of the file rxam-
adrm.ini, look for the line:

devin=0

and change the number to the number of the sounddevice that you
are going to connect your radio.

9



Figure 6: Picture sent by G8ITH

RESULTS

Computer to computer testing

During the development of RXAMADRM the audio signal generated
by DIGTRX running on a second computer was used. The audio
line output of the soundcard in the computer running DIGTRX was
connected to the microphone input of the Linux system running RXA-
MADRM. All DRM-modes A,B and E were checked with both settings
of interleave (long or short), with both settings of protection (Normal
or Low) and all possible QAM-modes. SNR was over 38 dB in this
set up. Transmitted files were jpg’s. Under all circumstances the re-
ception was without missing segments. A screenshot of the reception
of a 50 kB file in mode A with QAM-64 is given in figure 1.

Testing on the 80 meter band

Figure 6 is the first picture I received using RXAMADRM on the band
at 10 dB SNR. It was a Reed Solomon coded file 090301202608-Clip.rs2
of 14025 bytes from the station G8ITH. RXAMADRM cannot view
this kind of files directly, I had to decode and view it with external
programs.

Figures 7 and 8 show some more received pictures. I have no data
on SNR because they were received in the standalone mode of drmtst.
I just found them in the ./pics directory after I left the program on

10



Figure 7: Picture sent by DF2L on 80 m on March 4th 2009

for some time.

DISCUSSION

The main reason to develop RXAMADRM was to provide the Linux
community of hams with a good starting point to develop their own
drm-based digital SSTV software. Linux offers a large variety of GUI-
builders of which Tk/Tcl is just one. With toolkits like Gtk+ it is
possible to build very sophisticated screens with attractive readouts,
display of images and controls. Especially when these toolkits are com-
bined with scripting languages they make it easy to automate many
tasks like logging, web publishing, generating e-QSL’s etc. RXAM-
ADRM offers all required real-time data-acquisition and processing to
convert the lf audio output of a receiver tuned to a ham DRM SSTV
station to a diskfile of the transmitted image that is an exact copy of
the one the sending station used.

The rxamadrm.tcl script shows an example of how this func-
tionality can be ”dressed” with a graphical user interface that can be
customized to one’s personal liking. It also allows to supplement the
system with convenience functions like logging, archiving of pictures,
etc. As of version 0 4 rxamadrm.tcl incorporates the decoding of
Reed-Solomon coded pictures (-rs1, -rs2, -rs3 and -rs4). Moreover
jp2-picture files are converted to -jpg files to show them in the GUI.

11



Figure 8: Picture sent by DF2ML on 80 m on March 5th 2009

Update June 29th 2011

With the installation of a new version of Linux (SuSE 11.2) on a new
multicore processor computer some slight changes were necessary to
compile and successfully run rxamadrm. First of all it was necessary
to use the new libdfftw libraries. This necessitated the change of
the line #include <fftw.h> into #include <dfftw.h> in all files were
this line is present. Also the Makefile was updated to have the -ldfftw
instead of the -lfftw compile option.

A major change has been introduced in the realtime data-acquisition.
It now uses a mutex semaphore to prevent corruption of the sound
buffer pointers, a measure that turned out to be necessary in the new
multiprocessor environment.

The name of the new version is rxamdrmv0 2.

Update November 26th 2011

With the now popular use of .rs2 files with some redundancy in the
data sent, it is possible to construct a good picture even when some
segments are missed during reception. Rxamadrmv0 2 and v0 1 only
saved a received picture when it was perfectly received. To be able
to exploit the benefits of the Reed/Solomon encoding, files containing
the incomplete rs-coded data are needed. This new version rxam-
adrmv0 3exp provides these files with incomplete data in the subdi-
rectory ./incomplete of the main directory with the executables. It

12



has only be tested until now on a 64 bits Ubuntu 11.04 natty system.
To reconstruct the data from the incomplete files you need the

external program rsdecoder that was available with windrm. Cur-
rently work is in progress to provide this Reed-Solomon decoding on
the fly in rxamadrm.

Update January 2nd, 2012

In the v0 3 release reedsolomon decoding (only rs2-format) has been
added. Its executable is called rs2decode and it is located in the root
directory rxamadrmv0 3 when the archive is extracted. Its source
code is in the same directory and by using make the excutable will
be built alongside the executable of the main program drmtst. If
drmtst is used standalone received files will fill up the subdirecto-
ries ./incomplete or ./pics. The .rs2 files in these subdirectories
can be converted to their original counterparts manually by running
rs2decode from its own directory, i.e.:

./rs2decode ./pics/mypicture.rs2

This can also be tried with .rs2-files found in the ./incomplete sub-
directory. Success will then depend on whether enough good segments
will have been received to allow all errors to be corrected.

Together with the incorporation of the reedsolomon decoding jp2-
decoding has now been added to rxamadrm.tcl. It uses an exteral
picture format conversion program called jasper, which should be
installed on your linux system. If it is not available rxamadrm.tcl
will crash.

Update March 15th 2012

Thanks to very useful comments from David KI6ZHD a number of
bugs could be removed from and some useful additions could be added
to rxamadrm. Version 0 4 has automatic Reed-Solomon decoding for
-rs1, -rs2, -rs3 and -rs4 coded pictures. It converts -jp2 pictures to the
jpg-format before showing them in the GUI and the documentation
was updated and corrected. If your have more than one soundcard in
your system, the one that you are going to connect your radio to can
be set in the file rxamadrm.ini which is located in the main directory
of rxamadrm.

13



References

[1] Cesco HB9TLK, http://www.qslnet.de/member/hb9tlk/.

[2] http://n1su.com/windrm.

[3] VK2CZU, http://www.users.on.net/ trevorb/.

[4] http://www.tima.com/ djones/hamdrm.htm.

[5] Cesco HB9TLK, http://www.qslnet.de/member/hb9tlk/drm h.html.

[6] T. Schorr A.Dittrich, http://nt.eit.uni-kl.de/forschung/diorama.

[7] T.Schorr A.Dittrich W. Sauer-Greff R.Urbansky, http://www.fh-
kl.de/ drm/dokumente/sonstige/ieee sp2005 diorama.pdf.

[8] R. Dean Straw, editor. The ARRL Handbook For Radio Commu-
nications. ARRL, 2006.

14


